2,773 research outputs found

    Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain

    Get PDF
    Optical methods provide a means of monitoring cerebral oxygenation in newborn infants at risk of brain injury. A 32-channel optical imaging system has been developed with the aim of reconstructing three-dimensional images of regional blood volume and oxygenation. Full image data sets were acquired from 14 out of 24 infants studied; successful images have been reconstructed in 8 of these infants. Regional variations in cerebral blood volume and tissue oxygen saturation are present in healthy preterm infants. In an infant with a large unilateral intraventricular haemorrhage, a corresponding region of low oxygen saturation was detected. These results suggest that optical tomography may provide an appropriate technique for investigating regional cerebral haemodynamics and oxygenation at the cotside. (c) 2006 Elsevier Inc. All rights reserved

    Sampling of explosive residues: the use of a gelatine-based medium for the recovery of ammonium nitrate

    Get PDF
    Forensic scientists must be able to recover traces of any original explosive materials not consumed in the detonation, in a careful controlled manner to aid a crime reconstruction. In current sampling techniques, the collection efficiency of post-blast residue is highly variable and often dependent on the swabbing materials and solvent systems used. To address these method limitations, this study presents a gelatine-based sampling medium and assesses its capabilities for the collection of ammonium nitrate. Common surfaces were spotted with a known concentration of ammonium nitrate, the unset gel applied, allowed to set, and then peeled from the surface. The gel was dissolved, and solid phase extraction employed to isolate the target explosive compound and remove the constituents of the gel. The eluate was concentrated and subsequently analysed and quantified. Overall, the gel formulation was able to collect ammonium nitrate from all of the test surfaces, with recoveries ranging from 0.1% to 61.7%. This study presents a gelatine-based formulation that has the potential to become a valuable asset in the forensic tool kit for the collection of explosive traces. A key attribute of the gel is that it offers an alternative recovery tool to conventional swabbing and solvent extraction methods

    Students learning engineering skills together in cross-year-group integrated tutorials

    Get PDF
    Through tutorials, students can develop their engineering and professional skills outside taught modules. We introduced a new integrated tutorial system in which students were taught in mixed year groups. Questionnaires and focus groups were used to investigate whether students preferred integrated tutorials or tutorials in their year groups. There was a clear preference for integrated tutorials, with students feeling that they provided improved pastoral and academic support and were more stimulating. They particularly appreciated the opportunity to mix with students from other years in a learning community. A minority of students felt that mixing the year groups meant that less material was relevant to individual students than in singleyear group tutorials. Overall, integrated tutorials were felt to offer a more supportive learning experience than traditional year-group tutorials

    The reproducibility of optical mammography in healthy volunteers.

    Get PDF
    This study was designed to determine the reproducibility of optical mammography. Eight healthy pre-menopausal volunteers were scanned at different time intervals (minutes, weeks and months apart) to investigate the effects of within-subject variation, between-subject variation and systematic variations on both the raw data and images. The study shows that the greatest source of variation in optical mammography raw data and images is between different subjects, and scans of the same subject are very reproducible. The averaged total haemoglobin concentration from the eight volunteers was (24 ± 10) µM, and the average tissue oxygen saturation was (70 ± 10)%, which is comparable with other data in the literature. The average absorption coefficient at 780 nm was (0.0048 ± 0.0017) mm(-1) and the average reduced scatter coefficient at 780 nm was (0.80 ± 0.12) mm(-1). Again, this is comparable with published values. When our data are combined with the published values, the weighted average total haemoglobin concentration and tissue oxygen saturation for pre-menopausal breasts are (29 ± 8) µM and (73 ± 3)%, respectively. The results of our study show that we can be reassured that any changes within the tumour region seen during neoadjuvant therapy are likely to be due to a real physiological response to treatment, as the physiological properties of the breast remain relatively constant. However, in this study, we cannot distinguish between a tumour response to treatment and systemic changes in the healthy breast

    Data-driven approach to optimum wavelength selection for diffuse optical imaging

    Get PDF
    The production of accurate and independent images of the changes in concentration of oxyhemoglobin and deoxyhemoglobin by diffuse optical imaging is heavily dependent on which wavelengths of near-infrared light are chosen to interrogate the target tissue. Although wavelengths can be selected by theoretical methods, in practice the accuracy of reconstructed images will be affected by wavelength-specific and system-specific factors such as laser source power and detector sensitivity. We describe the application of a data-driven approach to optimum wavelength selection for the second generation of University College London's multichannel, time-domain optical tomography system (MONSTIR II). By performing a functional activation experiment using 12 different wavelengths between 690 and 870 nm, we were able to identify the combinations of 2, 3, and 4 wavelengths which most accurately reproduced the results obtained using all 12 wavelengths via an imaging approach. Our results show that the set of 2, 3, and 4 wavelengths which produce the most accurate images of functional activation are [770, 810], [770, 790, 850], and [730, 770, 810, 850] respectively, but also that the system is relatively robust to wavelength selection within certain limits. Although these results are specific to MONSTIR II, the approach we developed can be applied to other multispectral near-infrared spectroscopy and optical imaging systems

    Terahertz Time-Domain Spectroscopy of Human Blood

    Get PDF
    In the continuing development of terahertz technology to enable the determination of tissue pathologies in real-time during surgical procedures, it is important to distinguish the measured terahertz signal from biomaterials and fluids, such as blood, which may mask the signal from tissues of interest. In this paper, we present the frequency-dependent absorption coefficients, refractive indices, and Debye relaxation times of whole blood, red blood cells, plasma, and a thrombus

    Terahertz pulsed imaging of freshly excised human colonic tissues

    Get PDF
    We present the results from a feasibility study which measures properties in the terahertz frequency range of excised cancerous, dysplastic and healthy colonic tissues from 30 patients. We compare their absorption and refractive index spectra to identify trends which may enable different tissue types to be distinguished. In addition, we present statistical models based on variations between up to 17 parameters calculated from the reflected time and frequency domain signals of all the measured tissues. These models produce a sensitivity of 82% and a specificity of 77% in distinguishing between healthy and all diseased tissues and a sensitivity of 89% and a specificity of 71% in distinguishing between dysplastic and healthy tissues. The contrast between the tissue types was supported by histological staining studies which showed an increased vascularity in regions of increased terahertz absorption

    Image reconstruction of oxidized cerebral cytochrome C oxidase changes from broadband near-infrared spectroscopy data

    Get PDF
    In diffuse optical tomography (DOT), overlapping and multidistance measurements are required to reconstruct depth-resolved images of oxy- ([Formula: see text]) and deoxy- (HHb) hemoglobin concentration changes occurring in the brain. These can be considered an indirect measure of brain activity, under the assumption of intact neurovascular coupling. Broadband systems also allow changes in the redox state of cytochrome c oxidase (oxCCO) to be measured, which can be an important biomarker when neurovascular coupling is impaired. We used DOT to reconstruct images of [Formula: see text], [Formula: see text], and [Formula: see text] from data acquired with a broadband system. Four healthy volunteers were measured while performing a visual stimulation task (4-Hz inverting checkerboard). The broadband system was configured to allow multidistance and overlapping measurements of the participants' visual cortex with 32 channels. A multispectral approach was employed to reconstruct changes in concentration of the three chromophores during the visual stimulation. A clear and focused activation was reconstructed in the left occipital cortex of all participants. The difference between the residuals of the three-chromophore model and of the two-chromophore model (recovering only [Formula: see text] and [Formula: see text]) exhibits a spectrum similar to that of oxCCO. These results form a basis for further studies aimed to further optimize image reconstruction of [Formula: see text]
    • …
    corecore